INTRODUCTION
This Annual Drinking Water Quality Report for calendar year 2017 is designed to inform you about your drinking water quality. Our goal is to provide you with a safe and dependable supply of drinking water, and we want you to understand the efforts we make to protect your water supply. The quality of your drinking water must meet state and federal requirements administered by the Virginia Department of Health (VDH).

If you have questions about this report, want additional information about any aspect of your drinking water or want to know how to participate in decisions that may affect the quality of your drinking water, please contact:

Bruce Smith, Water Supervisor
434-983-2853

The times and location of regularly scheduled Board meetings are as follows:

2nd Monday of each month at 6:00 PM at the Buckingham County Administration Complex

GENERAL INFORMATION
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it can dissolve naturally-occurring minerals and, in some cases, radioactive materials, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants in source water may be naturally occurring substances or may come from septic systems, discharges from domestic or industrial wastewater treatment facilities, agricultural and farming activities, urban stormwater runoff, residential uses, and many other types of activities. Contaminants that may be present in source water include: (1) Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. (2) Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. (3) Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. (4) Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems. (5) Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

All drinking water, including bottled drinking water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (800-426-4791).
SOURCE AND TREATMENT OF YOUR DRINKING WATER
The source of your drinking water is surface water from the Troublesome Creek Reservoir.

Treatment of the raw water consists of chemical addition, coagulation, flocculation, settling, filtration, fluoridation, chlorination and corrosion control. All of these processes work together to remove the physical, chemical, and biological contaminants to make the water safe for drinking. Water from surface sources is treated to make it drinkable while groundwater may or may not have any treatment.

A source water assessment for the Buckingham County Water Supply was conducted in 2002 by the Virginia Department of Health. The source was determined to have a high susceptibility to contamination using criteria developed by the State in its approved Source Water Assessment Program. The assessment report consists of maps showing the source water assessment area, an inventory of known land use activities of concern, and documentation of any known contamination within the last 5 years. The report is available by contacting your water system representative at the phone number or address provided with this drinking water quality report.

DEFINITIONS
Contaminants in your drinking water are routinely monitored according to federal and state regulations. The table below shows the results of this monitoring for the period of January 1st through December 31st, 2017. In the table and elsewhere in this report you will find terms and abbreviations you might not be familiar with. The following definitions are provided to help you better understand these terms:

Action Level (AL) - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Locational Running Annual Average (LRAA) - the average of sample analytical results for samples taken at a particular monitoring location during the previous four calendar quarters.

Maximum Contaminant Level (MCL) - the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the cloudiness of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Non-detects (ND) - lab analysis indicates that the contaminant is not present, based on the limits of the analytical equipment used.

Not Applicable (NA) - no data are relevant to the situation.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or one penny in $10,000,000.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or one penny in $10,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Treatment Technique (TT) - a required process intended to reduce the level of a contaminant in drinking water.
WATER QUALITY RESULTS

We routinely monitor for various contaminants in the water supply to meet all regulatory requirements. The table below lists only those contaminants that had some level of detection. Many other contaminants have been analyzed but were not present or were below the detection limits of the lab equipment.

Microbiological Contaminants

<table>
<thead>
<tr>
<th>Contaminant / Unit of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found / Range</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Typical Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>0</td>
<td></td>
<td>Presence of coliform bacteria in no more than 1 sample per month</td>
<td>None</td>
<td>No</td>
<td>6 per month</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Naturally present in the environment</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant / Unit of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found / Range</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Typical Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity NTU</td>
<td>NA</td>
<td></td>
<td>TT= Max 1 NTU</td>
<td>No</td>
<td>September 2017</td>
<td>Continuous & Every 2 hours in lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TT=95% of monthly samples must be <0.3 NTU</td>
<td></td>
<td></td>
<td>Soil runoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lowest monthly percentage of samples <0.3 - 100%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride ppm</td>
<td>4</td>
<td>4</td>
<td>Average: 0.79</td>
<td>No</td>
<td>Daily</td>
<td>Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Range: 0.70 – 0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lead and Copper

<table>
<thead>
<tr>
<th>Contaminant / Unit of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found / Range</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Typical Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead ppb</td>
<td>0</td>
<td>AL = 15</td>
<td><2 (90th percentile) Range: Non-detect Of twenty samples collected, none exceeded the AL</td>
<td>No</td>
<td>September 2017</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.039 (90th percentile) Range: <0.02 – 0.12 Of twenty samples collected, none exceeded the AL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper ppm</td>
<td>1.3</td>
<td>AL = 1.3</td>
<td>60 (running 4 quarter ave) Highest 4 Qtr Ave: 49 Range: 33–51</td>
<td>No</td>
<td>September 2017</td>
<td>Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives</td>
</tr>
</tbody>
</table>

Organic Contaminants

<table>
<thead>
<tr>
<th>Contaminant/Unit of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Typical Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Haloacetic Acids (HAA5s) ppb</td>
<td>N/A</td>
<td>60</td>
<td>Highest 4 Qtr Ave: 49 Range: 33–51</td>
<td>No</td>
<td>Quarterly 2017</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHMs) ppb</td>
<td>N/A</td>
<td>80</td>
<td>Highest 4 Qtr Ave: 81 Range: 45–110</td>
<td>Yes</td>
<td>Quarterly 2017</td>
<td>By-product of drinking water disinfection</td>
</tr>
</tbody>
</table>
Total Organic Carbon (TOCs) ppm

N/A

TT- Based on % removed during treatment process; meets when removal ratio ≥ 1.0

Lowest 4 quarter ave removal ratio: 1.25

Range of monthly removal: 1.13 - 1.48

No Monthly Naturally occurring in the environment

Chlorine ppm

MRDLG= 4

MRDL=4.0

Highest 4 Qtr Ave: 1.4

Range: 1.1 - 1.7

No Monthly at six sites Water additive used to control microbes

<table>
<thead>
<tr>
<th>Contaminant/Unit of Measurement</th>
<th>MCLG</th>
<th>MCL</th>
<th>Level Found</th>
<th>Violation</th>
<th>Date of Sample</th>
<th>Typical Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Emitters pCi/L</td>
<td>0</td>
<td>50</td>
<td>1.8</td>
<td>No</td>
<td>May 2014</td>
<td>Decay of natural and man-made deposits</td>
</tr>
</tbody>
</table>

The results in the table are from testing done in 2014 through 2017. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old.

The U.S. Environmental Protection Agency sets MCLs at very stringent levels. In developing the standards, EPA assumes that the average adult drinks 2 liters of water each day throughout a 70-year life span. EPA generally sets MCLs at levels that will result in no adverse health effects for some contaminants or a one-in-ten-thousand to one-in-one-million chance of having the described health effect for other contaminants. Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their liver, kidneys, or central nervous system and may have an increased risk of getting cancer.

INFORMATION ABOUT LEAD IN DRINKING WATER

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The Buckingham County Water Supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 15 to 30 seconds or until it becomes cold or reaches a steady temperature before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (Tel # 1-800-426-4791) or at http://www.epa.gov/safewater/lead.

VIOLATIONS

The Buckingham County Water Supply received one TTHM violation in the 2nd quarter of 2017.

The Buckingham County Water Supply is happy to supply the 2017 Drinking Water Quality Report and please call (434) 983-2853 with any questions.